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Abstract. The time second-order characteristic finite volume method is proposed for solving the one-dimensional Riemann-
Liouville space fractional convection-diffusion equation. To be specific, by employing the Euler-Lagrange integration 
approach, the fractional convection-diffusion equation is transformed into a parabolic-like equation, simplifying its 
numerical treatment. To achieve a high level of time accuracy, the second-order Runge-Kutta method is applied to solve the 
characteristic line equation, while the Crank-Nicholson implicit scheme is employed to handle the discretized equations 
efficiently. Furthermore, the parabolic-like equation is discretized utilizing piecewise linear finite elements to ensure the 
spatial accuracy. Then, a detailed analysis of the coefficient matrix for iterative equation reveals favorable numerical 
properties that enhance the stability and convergence of the proposed scheme. Numerical examples are given to verify the 

convergence order of our scheme is  in space step and in time step. The results demonstrate the potential 

of the proposed method as a powerful and effective tool for solving complex fractional convection-diffusion problems in 
scientific and engineering applications. 
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1 INTRODUCTION 

In recent years, the theory of fractional calculus has developed 
rapidly, and the research on its related properties has become 
more and more important. As a non-local operator, the fractional 
differential operator needs to depend on the time nodes before 
and after its time calculation, and it is also closely related to the 
length calculation in space. Thus, it is this property with memory 
effect that makes it possible to describe a series of complex 
dynamic changes in real life more accurately. Because of this, 
the fractional calculus equations defined by fractional 
differential operators is widely used in physics, chemistry, 
biology and many other disciplines [1-7]. 

There are three common definitions of fractional derivatives: 
Riemann-Liouville definition, Grunwald-Letnikov definition 
and Caputo definitions, they are equivalent to each other under 
certain conditions. Accurate numerical computation of 
fractional convection-diffusion problems is challenging sexual 
task. Especially for problems where advection dominates 
diffusion, and where advective agitation can exacerbate 
concentration gradients. Traditional numerical methods often 

encounter problems of unphysical oscillations and excessive 
numerical diffusion, and these methods cannot guarantee mass 
conservation, but this property is required for many practical 
mathematical model applications. Considering the difficulty of 
finding the analytical solutions of the fractional differential 
equation (FDE), there had been many effective methods 
developed for solving the FDEs, such as finite difference 
methods [8-12], finite element methods [13-15], finite volume 
methods [16-19] and so on. 

Since the finite volume method has local conservation, it is more 
suitable for modeling conservative partial differential equations. 
Pan et al. (2017) [20] presented a fast preconditioned iterative 
finite volume method for solving steady-state space-fractional 
diffusion equations. Fu et al. (2019) [21] proposed a time 
second-order finite volume method for solving unsteady space-
fractional diffusion equations by Crank-Nicholson scheme 
where the stability and convergence were proved in norm. 
Zhang et al. (2005) [22] proposed the finite volume method to 
solve the FADE, where the spatial derivative of the dispersion 
term was fractional, but the scheme produced numerical 
oscillations for the transport-dominated diffusive systems. 
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It was well known that the characteristic methods [23] can 
significantly reduce the truncation errors in time and allow for 
larger time steps. Wang and Wang (2011) [24] proposed a fast 
characteristic finite difference method for one-dimensional 
fractional transient convection-diffusion equations based on fast 
Fourier transformation and the scheme didn't preserve local 
mass. Rui and Tabata (2010) [25] developed a mass-
conservative characteristic finite element scheme for solving 
convection-diffusion problems. Colella and Woodwar (1984) 
[26] developed a piecewise parabolic method (PPM) for solving 
one-dimensional advection equations. While the method used 
the parabola interpolation at the previous level, the local mass 
conservation for the advection problems can be ensured. Further, 
by introducing the conservative interpolation and the continuous 
discrete fluxes [27-29] proposed the time second-order 
characteristic finite difference method and finite volume method 
solving high-dimensional advection-diffusion equations and 
atmospheric pollution advection-diffusion problems. The papers 
[30, 31] proposed the Eulerian-Lagrangian localized adjoint 
method, which provided the desired local conservation where 
local conservation was essential for some physical problems. 
Liang et al. (2017) [32] developed a fractional step ELLAM 
approach to high-dimensional convection-diffusion equation 
with forward particle tracking. Until now, there was no work on 
time second-order characteristic finite volume for solving the 
space-fractional convection-diffusion equation. 

In this paper, we propose a time second-order characteristic 
finite volume method for solving the one-dimensional Riemann-
Liouville space fractional convection-diffusion equation. By the 
Euler-Lagrange integration technique, we convert the 
convection-diffusion equation into the parabolic-like equation. 
Then, the second-order Runge-Kutta method is applied to solve 
the characteristic line equation while the Crank-Nicholson 
implicit scheme is used to solve the equations. The equation is 
discretized by using piecewise linear elements. The properties 
of the coefficient matrix of the iterative equation are analyzed. 
Numerical examples are given to verify the convergence order 
of our scheme is -order in space step and second-order in 
time step. 

The structure of this paper is organized as follows, Firstly, the 
mathematical model and scheme is considered. Then, the 
properties of the iterative matrix and error estimation are given. 
Finally, some numerical examples are tested to verify the spatial 
and time convergence order.  

2 MODELING AND SCHEME 

The space-fractional convection-diffusion equations with an 
anomalous diffusion of order  in the divergence form 
are studied as 

 (1) 

where   and  are 

utilized to denote the left and right Riemann-Liouville fractional 
derivatives as: 

 (2) 

Let  Then, 

equation (1)  can be rewritten into 

  (3) 

The characteristic curve  from the point 

 satisfies the following relations over the time interval 

, i.e., 

    (4) 

where  is the characteristic direction at the time interval 

 and . Now, we integrate 

with respect to  over  and use Leibniz' rule, it leads 

to 
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The uniform conforming mesh on domain  is 

defined as  and . The staggered grid 

nodes  and are set as 

 (7) 

Integrating (6) over , we can obtain that 

 

 (8) 

Let ,  and approximate (4) 

by using second-order Runge-Kutta formula, we then get 

 (9) 

where 

Averaging the diffusion and the source terms along the 
characteristic line, it follows that 

  (10) 

Substituting (9) into (10), it leads to 

 (11) 

In this study, the finite volume method is used to solve equation 
(11) effectively. The specific implementation process will be 
introduced in the next subsection. 

Finite Volume Method 

Let  be the space of continuous and piecewise linear 

functions with respect to the spatial partition, which vanishes at 

the boundary, and  is the nodal linear basis function such 

that 

 (12) 

Let  be the numerical approximation 

to the exact solution of (11), we can have that 

 (13) 

where By calculating, 

we can obtain that the follow lemmas. 
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 (17) 

where 

 (18) 

By introducing the following symbol, equation (16) and (17) can 
be written as 
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 (26) 

Thus, we derive that  is tri-diagonal matrix. 

3 PROPERTIES OF ITERATIVE MATRIX 

The Properties Of  

For , define  as 

 (27) 

Thus, we can have that 

 

 (28) 

Further, we can derive that 

 

 (29) 

So, we get that 

  (30) 

and ,  is dependent on . 

Define  as 

     (31) 

i.e., 

    (32) 

It is not difficult to derive that 

 (33) 

Thus, it holds that 

 (34) 

We can prove that 

     (35) 

The properties of matrix 

Let 

  (36) 

where 
 

Lemma 2. For , , is strictly 

diagonally dominant iff . 

Proof. When , it holds that 

     (37) 

Due to , it follows that 

    (38) 

We complete the proof.  

Let 

  (39) 

with 

  (40) 

When , by (35), we have that 

 (41) 

Lemma 3. When ,  and ,  

is strictly diagonally dominant matrix. 

Proof. when , it follows that 

           (42) 

1/2

1/2

1/2
1/2

1/2
1/2

1

1 1

1

( )d , 1,

( )d ( )d , ,1
( )

( )d , 1,

0,  else.

i

i

i i

i
i i

i
i

i

x

jx

x x
x j jx x

jx
x

jx

x x x j i

x x x x x x j i
x

x
x x x j i















 



   


   
     






 


A

ks

0 1  ( )G x

1 1
( ) ( ) ( 1),  2, ( ) ( ) ( ) ,  1.

2 2
G x g x g x x g x x x x         

1 1

2 2

( ) ( ( ) ( 1)) ( 1) (1).
N N

k k

G k g k g k g N g
 

 

      

   

   

1 1'

2 2

( ) 1/ 2 1/ 2 0,

( ) ( 1) 1/ 2 1/ 2 0.

g x x x

g x x x

 

 



 

 

 

      
       

(2) (3) (4) ( ) 0,G G G G k      

(0) 0G  (1)G 

( )G x

( ) ( ) ( 1), 2,G x G x G x x   


1( ) , 2,3, , 1.k kG k s s k N   

   2 2
( ) ( 1)( 2) 1/ 2 1/ 2 0,g x x x

              

( ) ( ) ( 1) 0, ( ) ( ) ( 1) 0,G x g x g x G x G x G x
           

  (2) (3) (4) 0.G G G   

   T T

0 1 1 0 1 1, , , ,, , , ,c N r Nt t t t t t t t     


1 0( ),  0,1,2, , 1,  ,  0,  2,3, , 1.k kt G k k N t G t k N          

0 1  N N   T

1 2 0s s 

1 2 0s s 

 
1 1

1 1
1 1

,
N N

k k k N
k k

t s s s s
 


 

      

0Ns 

 
1

0 1 0 1 0
1

.
N

k k N
k

t t s s s s s t





      


   T T

0 1 1 0 1 1, , , , , , , ,c N r Nb b b b b b b b     

 
 

 
 

0 0 1

1 1 2 0

1 1 2 0

1

1

(1 )

(1 )

,  2,3, , 1,

(1 ) ,  2,3

,

,

, , 1.

,

k k k

k k k

b s s

b s s s

b s s s

b s s k N

b s s k N

 
 








 

 
        
     


     

0 1 

 
11

1 1 1 1 1 2
1 2

( ) .
NN

k k k k N
k

b b b b s s b b s s


   


         

0 1  0 1  1 2 0s s  B

1 2 0s s 

1 10, 0.b b 



Journal of 
          Research in Multidisciplinary Methods and Applications 

http://www.satursonpublishing.com/  

ISSN 2957-3920 (Online)  ISSN 3007-7060 (Print) 

Volume 4, Issue 2, February 2025 

01250402003-6 

http://www.satursonpublishing.com/ 

Further, we can obtain that 

   (43) 

We complete the proof.  

Remark 2. By Lemma 3, we can prove that the coefficient 

matrix  are strictly diagonally dominant and 

solvability. 

4 ERROR ESTIMATE 

4.1 TIME ERROR ESTIMATION 
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We complete the proof.  

Lemma 5. Define  

       (56) 

The spatial truncation error is 

     (57) 

where 

          (58) 

5 NUMERICAL EXPERIMENTS 

In this section, some numerical examples are given to verify the 

convergence order of our scheme is of convergent  in 

space and is  in time. In example 1 and 2, we assume 

that the domain  and the total time  

Example 1. Take the initial solution  

and . The source function is given as 

 (59) 

with 

  (60) 

where . We can solve the exact solution as 

        (61) 

The convergence order of our scheme is given in Table 1 - Table 
2. In Table 1, we take the time step  and the 

space  and respectively. 

TABLE 1. ERRORS AND ORDERS OF CONVERGENCE IN SPACE FOR EXAMPLE 1. 

  h 1/10 1/20 1/40 1/80 

 

 
 4.4447E-03 1.2397E-03 3.8223E-04 1.3582E-04 

order - 1.843 1.697 1.499 

 
 4.0033E-03 9.9995E-04 2.4622E-04 6.0535E-05 

order - 2.013 2.021 2.024 

 
 4.4002E-03 1.2232E-03 3.7823E-04 1.3589E-04 

order - 1.847 1.694 1.477 

 

 
 7.0972E-03 2.1115E-03 6.3768E-04 1.9716E-04 

order - 1.749 1.727 1.693 

 
 2.9837E-03 6.8737E-04 1.5696E-04 3.5858E-05 

order - 2.118 2.131 2.130 

 
 7.1700E-03 2.1510E-03 6.5292E-04 2.0284E-04 

order - 1.737 1.720 1.687 

   8.0962E-03 2.2775E-03 5.8661E-04 1.5065E-04 
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order - 1.830 1.952 1.966 

 
 2.0334E-03 4.7468E-04 1.1334E-04 2.7743E-05 

order - 2.099 2.066 2.030 

 
 9.5268E-03 2.5969E-03 6.6695E-04 1.7157E-04 

order - 1.875 1.956 1.964 

From Table 1, we can observe that the space convergence order 
of our scheme tends to  when the space fractional order 

 and 0.9. under the spatial discrete steps  tends 

to zeros. Meanwhile, it is not difficult to find that the space order 

tends to second-order when the left and right diffusion weight 
. Moreover, the space convergence order in Example 1 

is plotted in Figure 1 as follows. 

 

(A)  (B)  (C)  

FIGURE 1. THE PLOT OF SPACE CONVERGENCE ORDER FOR EXAMPLE 1. 

From Figure 1, we can clearly see that the spatial convergence 
order of the proposed scheme is . Next, we analyze the 
time convergence of our scheme. 

In Table 2, we take with the space step 

. It is easily to see that the proposed 

scheme is of convergence second-order in time. This conclusion 
can be found more intuitively in Figure 2. 

TABLE 2. ERRORS AND ORDERS OF CONVERGENCE IN TIME FOR EXAMPLE 1. 

  h 1/10 1/20 1/40 

 

 
 2.7462E-03 8.9851E-03 2.8862E-04 

order - 2.901 2.948 

 
 2.4248E-03 8.5695E-04 2.7510E-04 

order - 2.716 2.967 
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 2.7904E-03 9.0238E-03 3.0414E-04 

order - 2.886 2.901 

 

 
 5.7360E-03 1.5033E-03 4.0803E-04 

order - 2.511 2.445 

 
 2.2549E-03 5.9792E-04 1.7147E-04 

order - 2.729 2.361 

 
 5.7787E-03 1.5195E-03 4.1437E-04 

order - 2.524 2.456 

 

 
 6.7922E-03 1.8526E-03 4.7596E-04 

order - 1.968 2.058 

 
 1.5378E-03 4.1252E-04 9.0653E-04 

order - 1.993 2.295 

 
 8.3507E-03 1.9659E-03 4.4798E-04 

order - 2.191 2.240 

 

(A)  (B)  (C)  

FIGURE 2. THE PLOT OF TIME CONVERGENCE ORDER FOR EXAMPLE 1. 

Example 2. Take the initial solution  and  

. The source function is set as 
 (62) 

with 
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        (63) 

where  The exact solution is solved as 

         (64) 

Similarly, the computational results are recorded as follows. 

TABLE 3. ERRORS AND ORDERS OF CONVERGENCE IN SPACE FOR EXAMPLE 2. 

  h 1/10 1/20 1/40 1/80 

 

 
 1.1119E-03 3.0995E-04 9.5591E-05 3.3820E-05 

order - 1.843 1.697 1.499 

 
 1.0083E-03 2.4989E-04 6.1555E-05 1.5134E-05 

order - 2.013 2.021 2.024 

 
 1.1001E-03 3.0582E-03 9.4558E-04 3.3974E-05 

order - 1.847 1.693 1.477 

 

 
 1.7743E-03 5.2789E-04 1.5942E-04 4.9290E-05 

order - 1.749 1.727 1.693 

 
 7.4593E-03 1.7184E-04 3.9242E-05 8.9647E-06 

order - 2.118 2.131 2.130 

 
 1.7925E-03 5.3776E-04 1.6323E-04 5.0711E-05 

order - 1.737 1.720 1.687 

 

 
 2.0241E-03 5.6940E-03 1.4715E-04 3.7663E-05 

order - 1.830 1.952 1.966 

 
 5.0837E-04 1.1187E-04 2.8336E-05 6.9352E-06 

order - 2.099 2.066 2.030 

 
 2.3817E-03 6.4924E-04 1.6737E-04 4.2895E-05 

order - 1.875 1.956 1.964 
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(A)  (B)  (C)  

FIGURE 3. THE PLOT OF SPACE CONVERGENCE ORDER FOR EXAMPLE 2. 

TABLE 4. ERRORS AND ORDERS OF CONVERGENCE IN TIME FOR EXAMPLE 2. 

  h 1/10 1/20 1/40 

 

 
 6.6856E-03  2.2463E-04  7.2157E-05 

order - 2.901 2.948 

 
 6.0621E-04  2.1424E-04  6.8776E-05 

order - 2.716 2.967 

 
 6.9762E-04  2.3096E-04  7.6035E-05 

order - 2.886 2.901 

 

 
 1.4399E-03  3.7582E-04  1.0201E-04 

order - 2.511 2.445 

 
 6.3373E-04  1.4948E-04  4.2868E-05 

order - 2.729 2.361 

 
 1.4447E-03  3.3799E-04  1.0359E-04 

order - 2.524 2.456 

  
 1.8541E-03  4.7506E-04  1.1826E-04 

order - 2.063 2.106 
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 5.9003E-04  1.6085E-04  4.1629E-05 

order - 1.969 2.048 

 
 1.8740E-03  4.8283E-04  1.2039E-04 

order - 2.054 2.104 

 

(A)  (B)  (C)  

FIGURE 4. THE PLOT OF TIME CONVERGENCE ORDER FOR EXAMPLE 2. 

By Table 3 and Figure 3, we can find that our scheme tends to 
 in space. Furthermore, By Table 4 and Figure 4, it is clear 

that our scheme is of convergence second-order in time. These 
results once again verify the convergence order of this study. 

Example 3. The Gaussian distribution is utilized to display the 
convection-diffusion movement. We take the domain 

, , where . Let 

, and the initial solution 

         (65) 

In Figure 5, the movement of Gaussian peak with the different 
 and  is given. When the two coefficients become bigger, 

the diffusion behavior over time is not significant. Figure 6 
shows that when the weight  becomes bigger, the left 
diffusion is more obvious at the same . These results vividly 
illustrate the feasibility and effectiveness of this scheme in 
simulating convection-diffusion phenomena. 
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FIGURE 5. NUMERICAL SOLUTION AT DIFFERENT TIMES FOR EXAMPLE 3. 

 

(A)  (B)  (C)  

FIGURE 6. NUMERICAL SOLUTION IN DIFFERENT PARAMETERS FOR EXAMPLE 3. 

6 CONCLUSION 

In this study, a time second-order characteristic finite volume 
method is successfully developed to address one-dimensional 
Riemann-Liouville space fractional convection-diffusion 
equations. By reformulating the original equation into a 
parabolic-like structure, the proposed method simplifies 
computational complexity while ensuring accuracy. A 
combination of the second-order Runge-Kutta method and the 
Crank-Nicholson implicit scheme demonstrates high efficiency 
and precision in temporal discretization, complemented by the 
spatial accuracy achieved through piecewise linear finite 
elements. Rigorous analysis confirmed the stability and 
convergence of the iterative coefficient matrix. Numerical 
experiments validate the theoretical convergence orders of 

in space and in time, and also illustrate our 

method’s capacity in simulating the diffusion and convection 
behaviors under diverse parameter settings. The findings 
underscore the effectiveness and versatility of the proposed 
approach, making it a valuable contribution to the numerical 
study of fractional differential equations in applied sciences and 
engineering. 
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